谷歌浏览器插件
订阅小程序
在清言上使用

Room-temperature Electron Spin Polarization Exceeding 90% in an Opto-Spintronic Semiconductor Nanostructure Via Remote Spin Filtering

Nature photonics(2021)

引用 21|浏览13
暂无评分
摘要
An exclusive advantage of semiconductor spintronics is its potential for opto-spintronics, which will allow integration of spin-based information processing/storage with photon-based information transfer/communications. Unfortunately, progress has so far been severely hampered by the failure to generate nearly fully spin-polarized charge carriers in semiconductors at room temperature. Here we demonstrate successful generation of conduction electron spin polarization exceeding 90% at room temperature without a magnetic field in a non-magnetic all-semiconductor nanostructure, which remains high even up to 110 °C. This is accomplished by remote spin filtering of InAs quantum-dot electrons via an adjacent tunnelling-coupled GaNAs spin filter. We further show that the quantum-dot electron spin can be remotely manipulated by spin control in the adjacent spin filter, paving the way for remote spin encoding and writing of quantum memory as well as for remote spin control of spin–photon interfaces. This work demonstrates the feasibility to implement opto-spintronic functionality in common semiconductor nanostructures. An electron spin polarization of 90% is achieved in a non-magnetic nanostructure at room temperature without magnetic field. This is accomplished by remote spin filtering of InAs quantum-dot electrons via an adjacent tunnelling-coupled GaNAs spin filter.
更多
查看译文
关键词
Electronic and spintronic devices,Nanoscale materials,Optical materials and structures,Optical techniques,Spintronics,Physics,general,Applied and Technical Physics,Quantum Physics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要