谷歌浏览器插件
订阅小程序
在清言上使用

Accelerating photofragmentation UV Spectroscopy-Mass spectrometry fingerprinting for quantification of isomeric peptides.

Talanta(2021)

引用 4|浏览11
暂无评分
摘要
Identification of isomeric biomolecules remains a challenging analytical problem. A recently developed spectroscopic method that combines UV photofragmentation and mass spectrometry for fingerprinting of cold ions (2D UV-MS), has already demonstrated its high performance in the library-based identification and quantification of different types of biomolecular isomers. The practical use of the method has been hindered by a slow rate of data acquisition, which makes the fingerprinting incompatible with high-throughput analysis and online liquid chromatography (LC) separation. Herein we demonstrate how the use of a few pre-selected wavelengths can accelerate the method by two orders of magnitude without a significant loss of accuracy. As a proof of principle, 2D UV-MS fingerprinting was coupled to online LC separation and tested for quantification of isomeric peptides containing either Asp or isoAsp residues. The relative concentrations of the peptides mixed in solution have been determined, on average, with better than 4% and 6% accuracy for resolving and non-resolving gradients of LC separation, respectively.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要