谷歌浏览器插件
订阅小程序
在清言上使用

Ab Initio Theory of Photoemission from Graphene

NANOMATERIALS(2021)

引用 7|浏览8
暂无评分
摘要
Angle-resolved photoemission from monolayer and bilayer graphene is studied based on an ab initio one-step theory. The outgoing photoelectron is represented by the time-reversed low energy electron diffraction (LEED) state Phi(LEED)*, which is calculated using a scattering theory formulated in terms of augmented plane waves. A strong enhancement of the emission intensity is found to occur around the scattering resonances. The effect of the photoelectron scattering by the underlying substrate on the polarization dependence of the photocurrent is discussed. The constant initial state spectra I(k(parallel to), (h) over bar omega) are compared to electron transmission spectra T(E) of graphene, and the spatial structure of the outgoing waves is analyzed. It turns out that the emission intensity variations do not correlate with the structure of the T(E) spectra and are caused by rather subtle interference effects. Earlier experimental observations of the photon energy and polarization dependence of the emission intensity I(k(parallel to), (h) over bar omega) are well reproduced within the dipole approximation, and the Kohn-Sham eigenstates are found to provide a quite reasonable description of the photoemission final states.
更多
查看译文
关键词
graphene,angle-resolved photoemission,electron scattering,augmented plane waves
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要