Genetic Variant of TTLL11 Gene and Subsequent Ciliary Defects Are Associated with Idiopathic Scoliosis in a 5-Generation UK Family
Scientific reports(2021)SCI 3区
CHU Sainte-Justine Research Center | INRS-Centre Armand-Frappier Santé et Biotechnologie | NHLI | UCL GOSH Inst Child Hlth | Genetics and Molecular Medicine | Marfan Trust
Abstract
Idiopathic scoliosis (IS) is a complex 3D deformation of the spine with a strong genetic component, most commonly found in adolescent girls. Adolescent idiopathic scoliosis (AIS) affects around 3% of the general population. In a 5-generation UK family, linkage analysis identified the locus 9q31.2-q34.2 as a candidate region for AIS; however, the causative gene remained unidentified. Here, using exome sequencing we identified a rare insertion c.1569_1570insTT in the tubulin tyrosine ligase like gene, member 11 (TTLL11) within that locus, as the IS causative gene in this British family. Two other TTLL11 mutations were also identified in two additional AIS cases in the same cohort. Analyses of primary cells of individuals carrying the c.1569_1570insTT (NM_194252) mutation reveal a defect at the primary cilia level, which is less present, smaller and less polyglutamylated compared to control. Further, in a zebrafish, the knock down of ttll11, and the mutated ttll11 confirmed its role in spine development and ciliary function in the fish retina. These findings provide evidence that mutations in TTLL11, a ciliary gene, contribute to the pathogenesis of IS.
MoreTranslated text
Key words
Gene expression,Genetic linkage study,Genetics,Science,Humanities and Social Sciences,multidisciplinary
PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
2010
被引用14339 | 浏览
2008
被引用69 | 浏览
2011
被引用20 | 浏览
2012
被引用12 | 浏览
2005
被引用600 | 浏览
2014
被引用121 | 浏览
2015
被引用36 | 浏览
2017
被引用73 | 浏览
2018
被引用48 | 浏览
2018
被引用107 | 浏览
2016
被引用104 | 浏览
2016
被引用262 | 浏览
2019
被引用17 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
去 AI 文献库 对话