Determination of brominated flame retardants including polybrominated diphenyl ethers, pentabromoethylbenzene, hexabromobiphenyl, and decabromodiphenyl ethane in sediment samples: Validation of a rapid and efficient clean-up method and application to a sediment core from Lake Biwa, Japan.

Chemosphere(2021)

引用 5|浏览8
暂无评分
摘要
The development of rapid and efficient analytical method for the determination of legacy and current-use brominated flame retardants (BFRs) has been performed due to environmental concern related to these pollutants. In the present study, we used an automated clean-up device equipped with pre-packed micro-column sets (containing sulfuric acid impregnated silica gel and silver-modified alumina) to develop an effective purification method for polybrominated diphenyl ethers (PBDEs), pentabromoethylbenzene, hexabromobiphenyl, and decabromodiphenyl ethane (DBDPE) in sediment extracts. Matrix-spiked sediments (n = 6) and the Standard Reference Material® 1944 samples (n = 6) were tested. Our method showed acceptable accuracy, repeatability, and sensitivity for almost all the target compounds with reduced processing time, labor requirement, and solvent amounts as compared to conventional clean-up method (e.g., sulfuric acid treatment and self-packed chromatographic columns). The validated method was applied to sediment core samples (n = 16) collected in 2019 from Lake Biwa, the largest lake in Japan. PBDEs were detected in sediment samples of 0-13 cm depth (dated between 1990 and 2019) at relatively low concentrations (median 5.7; range 2.6-9.4 ng/g dry weight). PBDE profiles were dominated by BDE-209, which accounted for 91 ± 10% of total PBDEs. Among other BFRs, only DBDPE was found in sediment layers of 0-9 cm depth (deposited between 2005 and 2019). DBDPE concentrations ranged from 0.43 to 1.6 (median 0.71) ng/g and showed increasing trend toward shallower depths.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要