Performance test of the electromagnetic particle detectors for the LHAASO experiment

F. Aharonian, Q. An, Axikegu,L.X. Bai,Y.X. Bai, Y.W. Bao,D. Bastieri,X.J. Bi,Y.J. Bi, H. Cai, J.T. Cai,Z. Cao,J. Chang,J.F. Chang,X.C. Chang,B.M. Chen,J. Chen,L. Chen,M.J. Chen,M.L. Chen,Q.H. Chen,S.H. Chen,S.Z. Chen,T.L. Chen,X.L. Chen,Y. Chen,N. Cheng,Y.D. Cheng, S.W. Cui,X.H. Cui, Y.D. Cui, B.Z. Dai,H.L. Dai, Z.G. Dai, Danzengluobu,D. della Volpe,B. D’Ettorre Piazzoli,X.J. Dong,J.H. Fan,Y.Z. Fan,Z.X. Fan, J. Fang, K. Fang,C.F. Feng,L. Feng,S.H. Feng,Y.L. Feng,B. Gao, C.D. Gao, Q. Gao,W. Gao, M.M. Ge,L.S. Geng,G.H. Gong, Q.B. Gou,M.H. Gu,J.G. Guo,X.L. Guo,Y.Q. Guo,Y.Y. Guo,Y.A. Han,H.H. He,H.N. He,J.C. He,S.L. He,X.B. He,Y. He,M. Heller,Y.K. Hor,C. Hou,X. Hou,H.B. Hu,S. Hu,S.C. Hu,X.J. Hu,D.H. Huang,Q.L. Huang,W.H. Huang,X.T. Huang,Z.C. Huang,F. Ji,X.L. Ji,H.Y. Jia,K. Jia,K. Jiang,Z.J. Jiang,C. Jin,D. Kuleshov, K. Levochkin,B. Li,B.B. Li,C. Li, F. Li,H. Li,H.B. Li,H.C. Li, H.Y. Li,J. Li,K. Li, W.L. Li,X. Li,X.R. Li, Y. Li,Y.Z. Li,Z. Li, E.W. Liang,Y.F. Liang,S.J. Lin, B. Liu, C. Liu,D. Liu,H. Liu,H.D. Liu,J. Liu,J.L. Liu,J.S. Liu,J.Y. Liu,M.Y. Liu,R.Y. Liu,S.M. Liu,W. Liu,Y.N. Liu,Z.X. Liu,W.J. Long,R. Lu,H.K. Lv, B.Q. Ma,L.L. Ma,X.H. Ma, J.R. Mao,A. Masood,W. Mitthumsiri,T. Montaruli, Y.C. Nan, B.Y. Pang, P. Pattarakijwanich,Z.Y. Pei, M.Y. Qi,D. Ruffolo, V. Rulev,A. Sáiz,L. Shao, O. Shchegolev, X.D. Sheng,J.R. Shi,H.C. Song,Yu.V. Stenkin, V. Stepanov, Q.N. Sun, X.N. Sun,Z.B. Sun,P.H.T. Tam, Z.B. Tang,W.W. Tian,B.D. Wang,C. Wang,H. Wang,H.G. Wang,J.C. Wang,J.S. Wang,L.P. Wang,L.Y. Wang, R.N. Wang,W. Wang,X.G. Wang,X.J. Wang,X.Y. Wang,Y.D. Wang,Y.J. Wang,Y.P. Wang,Z. Wang,Z.H. Wang,Z.X. Wang,D.M. Wei,J.J. Wei,Y.J. Wei,T. Wen,C.Y. Wu, H.R. Wu,S. Wu, W.X. Wu,X.F. Wu, S.Q. Xi,J. Xia,J.J. Xia, G.M. Xiang, G. Xiao,H.B. Xiao, G.G. Xin,Y.L. Xin,Y. Xing,D.L. Xu, R.X. Xu, L. Xue,D.H. Yan,C.W. Yang,F.F. Yang,J.Y. Yang,L.L. Yang,M.J. Yang,R.Z. Yang, S.B. Yang, Y.H. Yao, Z.G. Yao, Y.M. Ye, L.Q. Yin,N. Yin,X.H. You,Z.Y. You,Y.H. Yu,Q. Yuan, H.D. Zeng, T.X. Zeng,W. Zeng, Z.K. Zeng,M. Zha,X.X. Zhai,B.B. Zhang, H.M. Zhang, H.Y. Zhang,J.L. Zhang, J.W. Zhang,L. Zhang,L.X. Zhang,P.F. Zhang,P.P. Zhang,R. Zhang,S.R. Zhang,S.S. Zhang,X. Zhang,X.P. Zhang, Y. Zhang, Y.F. Zhang,Y.L. Zhang,B. Zhao,J. Zhao, L. Zhao, L.Z. Zhao,S.P. Zhao,X. Zhao,F. Zheng, Y. Zheng,B. Zhou,H. Zhou, J.N. Zhou,P. Zhou,R. Zhou,X.X. Zhou, C.G. Zhu, F.R. Zhu,H. Zhu,K.J. Zhu,X. Zuo

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment(2021)

Cited 6|Views115
No score
Abstract
The Large High Altitude Air Shower Observatory (LHAASO) is a new generation hybrid cosmic ray observatory which is expected to reveal the mystery of the origin of cosmic rays. The one square kilometer array (KM2A) consisting of 5195 Electromagnetic particle Detectors (ED) and 1188 Muon Detectors (MD) is a sub-array of LHAASO. The EDs are designed to measure the density and arriving time of the secondary particles of extensive air showers. The performance of the EDs is tested for the quality control after construction in the laboratory at sea level. In this paper, the performance of more than four thousands EDs is summarized. The performance of all tested EDs meets the design requirements with the time resolution of 1.6 ns, the detection efficiency of 97.8%, charge resolution for single particle of 18.5% and count rate around 480 Hz. Furthermore, one ED is singled out for monitoring of the long-term stability over a period of nearly two years from December 2018 to November 2020.
More
Translated text
Key words
Electromagnetic particle detectors,KM2A,LHAASO,CORARS,Cosmic ray
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined