谷歌浏览器插件
订阅小程序
在清言上使用

The Green Tea Polyphenol EGCG is Differentially Associated with Telomeric Regulation in Normal Human Fibroblasts Versus Cancer Cells

Functional foods in health and disease/Journal of functional foods in health & disease(2021)

引用 2|浏览12
暂无评分
摘要
Introduction: Topical investigations have demonstrated that oxidative stress and inflammation play key roles in biological aging and determine incidence and course of age-related diseases. Lifestyle and environmental factors hugely impact epigenetic regulation and DNA stability with telomere attrition and epigenetic instability providing a potential record of the cumulative burden of endogenous and exogenous oxidative noxae. Certain physiologically active plant components exhibit antioxidative activities affecting epigenetic regulation of inflammation response and DNA repair.Methods: Against this background, the present study investigated green tea polyphenol epigallocatechin gallate (EGCG) in the context of telomere regulation in Caco-2 colorectal adenocarcinoma cells vs. ES-1 primary skin fibroblasts. Cell lines were treated with 20 and 200 µM EGCG for 36, 72 and 144 hours, respectively. Telomerase activity, relative telomere length as well as methylation status of hTERT and c-Myc from different culture conditions were assessed. Malondialdehyde (MDA) served as a surrogate marker of potential pro-oxidative effects of EGCG in a physiologically relevant tissue model.Results: EGCG incubation was associated with telomere shortening and decreased telomerase activity in Caco-2 cells, and relatively longer telomeres along with increased methylation of six 5'—C—phosphate—G—3' (CpG) sites in the promoter region of human Telomerase Reverse Transcriptase (hTERT) in fibroblasts. At low concentrations, EGCG significantly decreased oxidative damage to lipids in Caco-2 cells and attenuated H2O2 induced oxidation at higher concentrations.Conclusion: These results suggest differential EGCG-mediated telomeric modulation in cancer vs. primary cells and a specific antioxidant activity of EGCG against oxidative damage to lipids in abnormal cells.Keywords: Caco-2, epigallocatechin gallate, telomeres, hTERT, DNA methylation, telomerase, oxidative stress, malondialdehyde
更多
查看译文
关键词
Caco-2,epigallocatechin gallate,telomeres,hTERT,DNA methylation,telomerase,oxidative stress,malondialdehyde
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要