谷歌浏览器插件
订阅小程序
在清言上使用

Anomalous Temperature Dependence of Photoluminescence Caused by Non-Equilibrium Distributed Carriers in InGaN/(In)GaN Multiple Quantum Wells

NANOMATERIALS(2021)

引用 6|浏览14
暂无评分
摘要
An increase of integrated photoluminescence (PL) intensity has been observed in a GaN-based multiple quantum wells (MQWs) sample. The integrated intensity of TDPL spectra forms an anomalous variation: it decreases from 30 to 100 K, then increases abnormally from 100 to 140 K and decreases again when temperature is beyond 140 K. The increased intensity is attributed to the electrons and holes whose distribution are spatial non-equilibrium distributed participated in the radiative recombination process and the quantum barrier layers are demonstrated to be the source of non-equilibrium distributed carriers. The temperature dependence of this kind of spatial non-equilibrium carriers' dynamics is very different from that of equilibrium carriers, resulting in the increased emission efficiency which only occurs from 100 to 140 K. Moreover, the luminescence efficiency of MQWs with non-equilibrium carriers is much higher than that without non-equilibrium carriers, indicating the high luminescence efficiency of GaN-based LEDs may be caused by the non-equilibrium distributed carriers. Furthermore, a comparison analysis of MQWs sample with and without hydrogen treatment further demonstrates that the better quantum well is one of the key factors of this anomalous phenomenon.
更多
查看译文
关键词
anomalous temperature-dependent photoluminescence,non-equilibrium carriers dynamics,InGaN,GaN MQWs,hydrogen treatment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要