谷歌浏览器插件
订阅小程序
在清言上使用

A Bottom-Up Approach to Red-Emitting Molecular-Based Nanoparticles with Natural Stealth Properties and their Use for Single-Particle Tracking Deep in Brain Tissue.

Advanced materials (Deerfield Beach, Fla.)(2021)

引用 7|浏览11
暂无评分
摘要
Fluorescent nanoparticles dedicated to bioimaging applications should possess specific properties that have to be maintained in the aqueous, reactive, and crowded biological environment. These include chemical and photostability, small size (on the scale of subcellular structures), biocompatibility, high brightness, and good solubility. The latter is a major challenge for inorganic nanoparticles, which require surface coating to be made water soluble. Molecular-based fluorescent organic nanoparticles (FONs) may prove a promising, spontaneously water-soluble alternative, whose bottom-up design allows for the fine-tuning of individual properties. Here, the critical challenge of controlling the interaction of nanoparticles with cellular membranes is addressed. This is a report on bright, size-tunable, red-emitting, naturally stealthy FONs that do not require the use of antifouling agents to impede interactions with cellular membranes. As a proof of concept, single FONs diffusing up to 150 µm deep in brain tissue are imaged and tracked.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要