谷歌浏览器插件
订阅小程序
在清言上使用

Long Noncoding RNAs May Impact Podocytes and Proximal Tubule Function Through Modulating Mirnas Expression in Early Diabetic Kidney Disease of Type 2 Diabetes Mellitus Patients.

International journal of medical sciences(2021)

引用 14|浏览8
暂无评分
摘要
Aims: Long noncoding RNAs (lncRNAs) play key roles in the pathophysiology of DKD involving actions of microRNAs (miRNAs). The aims of the study were to establish the involvement of selected lncRNAs in the epigenetic mechanisms of podocyte damage and tubular injury in DKD of type 2 diabetes mellitus (DM) patients in relation to a particular miRNAs profile. Methods: A total of 136 patients with type 2 DM and 25 healthy subjects were assessed in a cross-sectional study concerning urinary albumin: creatinine ratio (UACR), eGFR, biomarkers of podocyte damage (synaptopodin, podocalyxin) and of proximal tubule (PT) dysfunction (Kidney injury molecule-1-KIM-1, N-acetyl-D-glucosaminidase-NAG), urinary lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), nuclear-enriched abundant transcript 1 (NEAT1), myocardial infarction-associated transcript (MIAT), taurine-upregulated gene 1 (TUG1), urinary miRNA21, 124, 93, 29a. Results: Multivariable regression analysis showed that urinary lncMALAT1 correlated directly with urinary synaptopodin, podocalyxin, KIM-1, NAG, miRNA21, 124, UACR, and negatively with eGFR, miRNA93, 29a (p<0.0001; R2=0.727); urinary lncNEAT1 correlated directly with synaptopodin, KIM-1, NAG, miRNA21, 124, and negatively with eGFR, miRNA93, 29a (p<0.0001; R2=0.702); urinary lncMIAT correlated directly with miRNA93 and 29a, eGFR (p<0.0001; R2=0.671) and negatively with synaptopodin, KIM-1, NAG, UACR, miRNA21, 124 (p<0.0001; R2=0.654); urinary lncTUG1 correlated directly with eGFR, miRNA93, 29a, and negatively with synaptopodin, podocalyxin, NAG, miRNA21, 124 (p<0.0001; R2=0.748). Conclusions: In patients with type 2 DM lncRNAs exert either deleterious or protective functions within glomeruli and PT. LncRNAs may contribute to DKD through modulating miRNAs expression and activities. This observation holds true independently of albuminuria and DKD stage.
更多
查看译文
关键词
lncRNA,miRNA,podocyte,proximal tubule,diabetes mellitus
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要