谷歌浏览器插件
订阅小程序
在清言上使用

Exciton-Phonon Interactions in Monolayer Germanium Selenide from First Principles.

˜The œjournal of physical chemistry letters(2021)

引用 10|浏览5
暂无评分
摘要
We investigate from first principles exciton-phonon interactions in monolayer germanium selenide, a direct gap two-dimensional semiconductor. By combining the Bethe-Salpeter approach and the special displacement method, we explore the phonon-induced renormalization of the exciton wave functions, excitation energies, and oscillator strengths. We determine a renormalization of the optical gap of 0.1 eV at room temperature, which results from the coupling of the exciton with both acoustic and optical phonons, with the strongest coupling to optical phonons at similar to 100 cm(-1). We also find that the exciton-phonon interaction is similar between monolayer and bulk GeSe. Overall, we demonstrate that the combination of many-body perturbation theory and special displacements offers a new route to investigate electron-phonon couplings in excitonic spectra, the resulting band gap renormalization, and the nature of phonons that couple to the exciton.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要