谷歌浏览器插件
订阅小程序
在清言上使用

Neuronal Gaussian Process Regression

Neural Information Processing Systems(2020)

引用 0|浏览766
暂无评分
摘要
The brain takes uncertainty intrinsic to our world into account. For example, associating spatial locations with rewards requires to predict not only expected reward at new spatial locations but also its uncertainty to avoid catastrophic events and forage safely. A powerful and flexible framework for nonlinear regression that takes uncertainty into account in a principled Bayesian manner is Gaussian process (GP) regression. Here I propose that the brain implements GP regression and present neural networks (NNs) for it. First layer neurons, e.g. hippocampal place cells, have tuning curves that correspond to evaluations of the GP kernel. Output neurons explicitly and distinctively encode predictive mean and variance, as observed in orbitofrontal cortex (OFC) for the case of reward prediction. Because the weights of a NN implementing exact GP regression do not arise with biological plasticity rules, I present approximations to obtain local (anti-)Hebbian synaptic learning rules. The resulting neuronal network approximates the full GP well compared to popular sparse GP approximations and achieves comparable predictive performance.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要