A C-terminal fragment of Arabidopsis OXIDATIVE STRESS 2 can play a positive role in salt tolerance.

Biochemical and biophysical research communications(2021)

Cited 3|Views8
No score
Abstract
The zinc finger transcription factor OXIDATIVE STRESS 2 (OXS2) was previously reported to be involved in oxidative stress tolerance and stress escape. Here we report that an Arabidopsis oxs2-1 mutant is also more sensitive to salt stress. Conversely, the overproduction of a C-terminal fragment of OXS2, the 'AT3' fragment, can enhance salt tolerance in Arabidopsis by upregulating the transcription of at least six salt-induced genes: COR15A, COR47, RD29B, KIN1, ACS2 and ACS6. Mutant analysis showed that the AT3-mediated salt tolerance requires MPK3, MPK6 and 14-3-3Ω. AT3 was shown to interact with MPK3 in planta, with 14-3-3Ω as a likely linker protein. AT3 can be phosphorylated by MPK3 during salt stress, upon which it relocates from the cytoplasm to the nucleus. It appears that the phosphorylation-induced nuclear localization of OXS2 contributes a positive role to the salt stress response.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined