谷歌浏览器插件
订阅小程序
在清言上使用

Fully automated counting of DNA damage foci in tumor cell culture: A matter of cell separation

S. Kocher, J. Volquardsen, A. Perugachi Heinsohn,C. Petersen,D. Roggenbuck,K. Rothkamm,W. Y. Mansour

DNA repair(2021)

引用 4|浏览7
暂无评分
摘要
Analysis and quantification of residual, unrepaired DNA double-strand breaks by detecting damage-associated gamma H2AX or 53BP1 foci is a promising approach to evaluate radiosensitivity or radiosensitization in tumor cells. Manual foci quantification by eye is well-established but unsatisfactory due to inconsistent foci numbers between different observers, lack of information about foci size and intensity and the time-consuming scoring process. Therefore, automated foci counting is an important goal. Several software solutions for automated foci counting in separately acquired fluorescence microscopy images have been established. The AKLIDES NUK technology by Medipan combines automated microscopy and image processing/ counting, enabling affordable high throughput foci analysis as a routine application. Using this machine, automated foci counting is well established for lymphocytes but has not yet been reported for adherent tumor cells with their irregularly shaped nuclei and heterogeneous foci textures. Here we aimed to use the AKLIDES NUK system for adherent tumor cells growing in clusters. We identified cell separation as a critical step to ensure fast and reliable automated nuclei detection. We validated our protocol for the fully automated quantification of (i) the IR-dose dependent increase and (ii) the ATM as well as PARP inhibitor-induced radiosensitization. Collectively, with this protocol the AKLIDES NUK system facilitates cost effective, fast and high throughput quantitative fluorescence microscopic analysis of DNA damage induced foci such as gamma H2AX and 53BP1 in adherent tumor cells.
更多
查看译文
关键词
DNA double-strand breaks,gamma H2AX/53BP1 foci,Fully automated foci counting,Radiosensitivity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要