谷歌浏览器插件
订阅小程序
在清言上使用

Physiological, Biochemical and Yield-Component Responses of Solanum Tuberosum L. Group Phureja Genotypes to a Water Deficit

Plants(2021)

引用 6|浏览12
暂无评分
摘要
Water deficits are the major constraint in some potato-growing areas of the world. The effect is most severe at the tuberization stage, resulting in lower yield. Therefore, an assessment of genetic and phenotypic variations resulting from water deficits in Colombia germplasm is required to accelerate breeding efforts. Phenotypic variations in response to a water deficit were studied in a collection of Solanum tuberosum Group Phureja. A progressive water deficit experiment on the tuberization stage was undertaken using 104 genotypes belonging to the Working Collection of the Potato Breeding Program at the Universidad Nacional de Colombia. The response to water deficit conditions was assessed with the relative chlorophyll content (CC), maximum quantum efficiency of PSII (Fv/Fm), relative water content (RWC), leaf sugar content, tuber number per plant (TN) and tuber fresh weight per plant (TW). Principal Component Analysis (PCA) and cluster analysis were used, and the Drought Tolerance Index (DTI) was calculated for the variables and genotypes. The soluble sugar contents increased significantly under the deficit conditions in the leaves, with a weak correlation with yield under both water treatments. The PCA results revealed that the physiological, biochemical and yield-component variables had broad variation, while the yield-component variables more powerfully distinguished between the tolerant and susceptible genotypes than the physiological and biochemical variables. The PCA and cluster analysis based on the DTI revealed different levels of water deficit tolerance for the 104 genotypes. These results provide a foundation for future research directed at understanding the molecular mechanisms underlying potato tolerance to water deficits.
更多
查看译文
关键词
yield component-water deficit,water deficit tolerance,sugar accumulation-water-deficit,diploid potato,Drought Tolerance Index
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要