Chrome Extension
WeChat Mini Program
Use on ChatGLM

Nanowire-Based Materials as Coke-Resistant Catalyst Supports for Dry Methane Reforming

CATALYSTS(2021)

Cited 5|Views6
No score
Abstract
In this paper, nanowire-supported catalysts loaded with nickel are shown to be coke resistant compared to nanoparticle-supported catalysts. Specifically, Ni-loaded titania-based nanowire catalysts were tested with the dry methane reforming process in a laboratory-scale continuous packed-bed atmospheric reactor. The CO2 conversion rate stayed above 90% for over 30 h on stream under coke-promoting conditions, such as high flow rates, low temperatures, and a high ratio of CH4 to CO2. The coke (CxHy, x>>y) on the spent catalyst surface for both nanowire- and nanoparticle-supported catalysts was characterized by TGA, temperature-programmed reduction (TPR), and electron microscopy (SEM/TEM/EDS), and it was revealed that the types of carbon species present and their distribution over the morphology-enhanced materials played a major role in the deactivation. The CO2 conversion activity of Ni supported on titania nanoparticles was reduced from similar to 80% to less than 72% in 30 h due to the formation of a graphitic coke formation. On the other hand, Ni particles supported on nanowires exhibited cube-octahedral morphologies, with a high density of non- (111) surface sites responsible for the increased activity and reduced graphitic coke deposition, giving a sustained and stable catalytic activity during a long time-on-stream experiment.
More
Translated text
Key words
titania,CO2,DMR,nanowire,methane,coke
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined