AGCM-3DLF: Accelerating Atmospheric General Circulation Model Via 3-D Parallelization and Leap-Format
IEEE transactions on parallel and distributed systems(2023)
摘要
The atmospheric general circulation model (AGCM) has been an important research tool in the study of climate change for decades. As the demand for high-resolution simulation is becoming urgent, the scalability and simulation efficiency is faced with great challenges, especially for the latitude-longitude mesh-based models. In this paper, we propose a highly scalable 3-D atmospheric general circulation model based on leap-format, namely AGCM-3DLF. First, it utilizes a 3-D decomposition method allowing for parallelism release in all three physical dimensions. Then the leap-format difference computation scheme is adopted to maintain computational stability in grid updating and avoid additional filtering at the high latitudes. A novel shifting window communication algorithm is designed for parallelization of the unified model. Furthermore, a series of optimizations are conducted to improve the effectiveness of large-scale simulations. Experiment results in different platforms demonstrate good efficiency and scalability of the model. AGCM-3DLF scales up to the entire CAS-Xiandao1 supercomputer (196,608 CPU cores), attaining the speed of 11.1 simulation-year-per-day (SYPD) at a high resolution of 25KM. In addition, simulations conducted on the Sunway TaihuLight supercomputer exhibit a 1.06 million cores scalability with 36.1% parallel efficiency.
更多查看译文
关键词
Atmospheric general circulation model,3-D decomposition,leap-format finite-difference,heterogeneous acceleration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要