谷歌浏览器插件
订阅小程序
在清言上使用

Dissipation-enhanced collapse singularity of a nonlocal fluid of light in a hot atomic vapor

PHYSICAL REVIEW A(2021)

引用 4|浏览6
暂无评分
摘要
We study the out-of-equilibrium dynamics of a two-dimensional paraxial fluid of light using a near-resonant laser propagating through a hot atomic vapor. We observe a double shock-collapse instability: a shock (gradient catastrophe) for the velocity as well as an annular (ring-shaped) collapse singularity for the density. We find experimental evidence that this instability results from the combined effect of the nonlocal photon-photon interaction and the linear photon losses. The theoretical analysis based on the method of characteristics reveals the main result that dissipation (photon losses) is responsible for an unexpected enhancement of the collapse instability. Detailed analytical modeling makes it possible to evaluate the nonlocality range of the interaction. The nonlocality is controlled by adjusting the atomic vapor temperature and is seen to increase dramatically when the atomic density becomes much larger than one atom per cubic wavelength. Interestingly, such a large range of the nonlocal photon-photon interaction is observed in an atomic vapor here, but its microscopic origin is currently unknown.
更多
查看译文
关键词
collapse singularity,hot atomic vapor,nonlocal fluid,dissipation-enhanced
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要