Microbiota-Derived Metabolites, Indole-3-Aldehyde And Indole-3-Acetic Acid, Differentially Modulate Innate Cytokines And Stromal Remodeling Processes Associated With Autoimmune Arthritis

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES(2021)

引用 16|浏览8
暂无评分
摘要
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of the synovial joints. Inflammation, new blood vessel formation (angiogenesis) and bone resorption (osteoclastogenesis) are three key processes involved in the joint damage and deformities of arthritis. Various gut microbiota-derived metabolites are implicated in RA pathogenesis. However, there is barely any information about the impact of two such metabolites, indole-3-aldehyde (IAld) and indole-3-acetic acid (I3AA), on arthritis-related processes. We conducted a comparative analysis of IAld and I3AA using established cell-based models to understand how they might influence RA pathogenesis. Although structurally similar, the bioactivities of these two metabolites were profoundly different. IAld but not I3AA, inhibited the expression of pro-inflammatory cytokines (IL-1 beta and IL-6) in RAW 264.7 (RAW) cells stimulated with heat-killed M. tuberculosis sonicate (Mtb) and lipopolysaccharide (LPS). IAld also exhibited pro-angiogenic activity and pro-osteoclastogenic activity. In contrast, I3AA exhibited anti-angiogenic activity on endothelial cell tube formation but had no effect on osteoclastogenesis. Both IAld and I3AA have been proposed as aryl hydrocarbon receptor (AhR) agonists. Use of CH-223191, an inhibitor of the AhR, suppressed the anti-angiogenic activity of I3AA but failed to mitigate the effects of IAld. Further investigation of the anti-inflammatory activities of IAld and I3AA in LPS-treated RAW cells indicated that inhibition of MyD88-dependent activation of NF-kappa B and MAPK pathways was not likely involved. Our results suggest that the relative bioavailability of these indole derivatives may differentially impact RA progression and possibly other diseases that share similar cellular processes.
更多
查看译文
关键词
rheumatoid arthritis, microbiota, indole-3-acetic acid, indole-3-aldehyde, aryl hydrocarbon receptor, NF-kappa B, MAPK, innate inflammation, cytokines, angiogenesis, osteoclastogenesis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要