Overexpression of SoACLA-1 Gene Confers Drought Tolerance Improvement in Sugarcane

Zhu Kai,Huang Chan,Phan Thi-Thu, Chinese Academy of Agricultural Sciences-Guangxi Academy of Agricultural Sciences,Zhang Bao-Qing,Xing Yong-Xiu,Li Yang-Rui

Plant molecular biology reporter(2021)

引用 4|浏览3
暂无评分
摘要
Drought is one of the most severe stresses which limit sugarcane production in China. ATP citrate lyase (ACL) is a major enzyme responsible for the production of acetyl-CoA in cytoplasm and plays an important role in plant metabolism and stress response. In this study, sugarcane ACL gene SoACLA-1 was cloned. The plant overexpression vector of SoACLA-1 was built and transformed into sugarcane calli by Agrobacterium -mediated transformation, and PCR analysis confirmed that SoACLA-1 gene had been stably present in the T0, T1, and T2 generations of the transgenic sugarcane. In order to evaluate the drought resistance of the transgenic lines and verify the function of SoACLA-1 gene in the transgenic sugarcane, T1 generation of the SoACLA-1 transgenic sugarcane lines was used as the material to investigate the physiological and biochemical characteristics at 0 day, 3 days, 6 days, and 9 days after water stress and rewatering for 3 days. Comprehensive evaluation of four indicators (chlorophyll, malondialdehyde, proline, soluble sugar) related to drought resistance was done with membership fuzzy function method. The results showed that the drought resistance of five transgenic sugarcane lines from strong to weak, in turn, was RT2 > RT4 > RT3 > RT1 > WT, and the recovery ability after drought, in turn, was RT1 > RT2 > RT4 > RT3 > WT. The T2 generation of the SoACLA-1 transgenic sugarcane lines was used to analyze the physiological and biochemical changes and the expression of drought-related genes under water stress. The results showed that the transgenic sugarcane lines were more tolerant to drought as compared with the wild-type plants. Our findings indicated that SoACLA-1 gene plays an important role as a positive factor in response to water stress, and overexpression of SoACLA-1 can enhance drought tolerance in transgenic sugarcane plants.
更多
查看译文
关键词
SoACLA-1,Transgenic sugarcane,Water stress,Genetic transformation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要