Excitonic Effect Drives Ultrafast Transition in Two-Dimensional Transition Metal Dichalcogenides.

JOURNAL OF PHYSICAL CHEMISTRY LETTERS(2023)

Cited 0|Views6
No score
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDCs) are ideal platforms for exploring excitonic physics because of the tightly bound excitons. In this work, we observed the onset of band-edge exciton formation in monolayer MoS2 (WS2) and bilayer MoS2-WS2 by measuring the transient optical response upon excitation with ultrashort laser pulses. In addition to wavelength dependence on excitation under nonresonant excitation, we found that the onset of band-edge exciton formation in monolayer MoS2 (WS2) pumped in the exciton state is significantly faster than that with pumping in the nonexciton state, which could be attributed to the effective transition between exciton states induced by the excitonic effect. Besides, the onset of band-edge exciton formation in van der Waals heterostructures is similar to that for monolayer TMDCs regardless of charge transfer at the interface. Our work contributes to a better understanding of exciton dynamics in 2D TMDCs, providing a solid basis of the rational design of the 2D optoelectronic applications based on TMDCs.
More
Translated text
Key words
ultrafast transition,excitonic effect,two-dimensional
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined