Chrome Extension
WeChat Mini Program
Use on ChatGLM

Nanofibers of Cellulose Acetate Containing ZnO Nanoparticles/graphene Oxide for Wound Healing Applications.

International Journal of Pharmaceutics(2021)

Cited 33|Views3
Abstract
A combination of nanostructured zinc oxide (ZnO) or graphene oxide or both of them with cellulose acetate (CA) enhances a new functionality of nanofibers aiming to improve bio-composite materials for wound healing application. The obtained nanofibers have been investigated using XRD, FTIR, and FESEM. It was observed that the maximum height of the roughness increased from 253 to 651.9 nm for both GO and ZnO/GO in the powdered phase, while it plunged from 613 to 482 nm and developed to 801 nm for ZnO@CA, GO@CA, and ZnO/GO@CA, receptively. Further, the mechanical properties of the obtained scaffolds have been tested and displayed a tremendous variation of tensile strength from 5.44 ± 0.81 to 12.87 ± 0.93 and 8.82 ± 1.2 MPa, while the toughness increased from 23.29 ± 1.4 to 68.95 ± 4.5 and 57.75 ± 3.6 MJ/m3 for ZnO@CA, GO@CA and ZnO/GO@CA, receptively. Moreover, the cell viability was investigated and showed a progression of 97.38 ± 3.9% for ZnO/GO@CA. Furthermore, the adhesion of human fibroblasts cell line towards the obtained nanofibrous scaffolds were examined and displayed that cells were proliferated and spread considerably through the scaffolds, whereas their filopodia have followed the morphology of the fibers.
More
Translated text
Key words
Wound healing,ZnO,Graphene,Antibacterial,Cell viability
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined