谷歌浏览器插件
订阅小程序
在清言上使用

Insights into the Mechanism of the Mechanochemical Formation of Metastable Phases

ACS APPLIED MATERIALS & INTERFACES(2021)

引用 8|浏览5
暂无评分
摘要
The mechanochemical reaction kinetics of sulfur with copper to form a metastable copper sulfide phase at room temperature is investigated in ultrahigh vacuum by modifying the properties of the copper during cleaning in vacuum. The measured kinetics is in agreement with a theory first proposed by Karthikeyan and Rigney that predicts that the rate depends linearly both on the contact time and on the strain-rate sensitivity of the substrate. The mechanism for this process was investigated using thin samples of copper fabricated using a focused-ion-beam and by measuring the crystal structure and elemental composition of the copper subsurface region by electron microscopy after reaction. The measured sulfur depth distributions produced by shear-induced surface-to-bulk transport were in good agreement with values calculated using rate constants that also model the reaction kinetics. Sulfur was found both in crystalline regions and also concentrated along grain boundaries, implying that formation of metastable phases is facilitated by both the presence of dislocations and by grain boundaries.
更多
查看译文
关键词
dialkyl sulfide,copper,shear-induced surface-bulk transport kinetics,Auger spectroscopy,electron microscopy,focused-ion-beam samples
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要