谷歌浏览器插件
订阅小程序
在清言上使用

Characterization of Cerebrospinal Fluid Ubiquitin C-Terminal Hydrolase L1 As a Biomarker of Human Acute Traumatic Spinal Cord Injury.

Journal of neurotrauma(2021)

引用 13|浏览15
暂无评分
摘要
A major obstacle for translational research in acute spinal cord injury (SCI) is the lack of biomarkers that can objectively stratify injury severity and predict outcome. Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a neuron-specific enzyme that shows promise as a diagnostic biomarker in traumatic brain injury (TBI), but has not been studied in SCI. In this study, cerebrospinal fluid (CSF) and serum samples were collected over the first 72-96 h post-injury from 32 acute SCI patients who were followed prospectively to determine neurological outcomes at 6 months post-injury. UCH-L1 concentration was measured using the Quanterix Simoa platform (Quanterix, Billerica, MA) and correlated to injury severity, time, and neurological recovery. We found that CSF UCH-L1 was significantly elevated by 10- to 100-fold over laminectomy controls in an injury severity- and time-dependent manner. Twenty-four-hour post-injury CSF UCH-L1 concentrations distinguished between American Spinal Injury Association Impairment Scale (AIS) A and AIS B, and AIS A and AIS C patients in the acute setting, and predicted who would remain "motor complete" (AIS A/B) at 6 months with a sensitivity of 100% and a specificity of 86%. AIS A patients who did not improve their AIS grade at 6 months post-injury were characterized by sustained elevations in CSF UCH-L1 up to 96 h. Similarly, the failure to gain >8 points on the total motor score at 6 months post-injury was associated with higher 24-h CSF UCH-L1. Unfortunately, serum UCH-L1 levels were not informative about injury severity or outcome. In conclusion, CSF UCH-L1 in acute SCI shows promise as a biomarker to reflect injury severity and predict outcome.
更多
查看译文
关键词
biomarker,cerebrospinal fluid,prognosis,spinal cord injury,UCH-L1
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要