谷歌浏览器插件
订阅小程序
在清言上使用

A Growing Freshwater Lens in the Arctic Ocean with Sustained Climate Warming Disrupts Marine Ecosystem Function

Journal of geophysical research Biogeosciences(2020)

引用 8|浏览16
暂无评分
摘要
One of the most robust changes in the hydrological cycle predicted by Earth System Models (ESMs) during the remainder of 21st century is an increase in the difference between precipitation and evapotranspiration (P-E) in arctic and boreal regions. We explore the long-term consequences of this change for marine ecosystems in the Arctic Ocean using the Community Earth System Model forced with a business as usual scenario of future greenhouse gas concentrations. We find that by the year 2300 increases in freshwater delivery considerably reduce Arctic Ocean surface salinity, creating a freshwater lens that has far-reaching impacts on marine biogeochemistry. The expanding freshwater lens limits vertical nutrient supply into the euphotic zone by enhancing vertical stratification and accelerating surface lateral mixing with surface waters in the North Atlantic, which become increasingly nutrient depleted from weakening of the Atlantic Meridional Overturning Circulation (AMOC). The resulting increase in nutrient stress reduces marine export production in the Arctic Ocean by 53% in 2300 relative to the 1990s and triggers a shift in community composition with small phytoplankton replacing diatoms. At the same time, the seasonal timing of export production undergoes a 2-month forward shift, with the peak advancing from July to May. This suggests that the threat to food webs and higher trophic levels may intensify after the year 2100 as gains in productivity from sea ice loss saturate and freshwater impacts on nutrient stress continue to strengthen. Our analysis highlights the critical importance of changing terrestrial hydrology and land-ocean coupling as drivers of long-term biogeochemical change in the Arctic Ocean and the necessity of multi-century climate change projections.
更多
查看译文
关键词
Marine export production,stratification,net primary production (NPP),diatoms,small phytoplankton,river runoff
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要