谷歌浏览器插件
订阅小程序
在清言上使用

Agglomerative Hierarchical Clustering for Selecting Valid Instrumental Variables

JOURNAL OF APPLIED ECONOMETRICS(2024)

引用 0|浏览2
暂无评分
摘要
We propose a procedure that combines hierarchical clustering with a test of overidentifying restrictions for selecting valid instrumental variables (IV) from a large set of IVs. Some of these IVs may be invalid in that they fail the exclusion restriction. We show that if the largest group of IVs is valid, our method achieves oracle properties. Unlike existing techniques, our work deals with multiple endogenous regressors. Simulation results suggest an advantageous performance of the method in various settings. The method is applied to estimating the effect of immigration on wages.
更多
查看译文
关键词
Clustering,Variable Selection,Variational Inference,Model Selection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要