Nanoscale subsurface dynamics of solids upon high-intensity femtosecond laser irradiation observed by grazing-incidence x-ray scattering

PHYSICAL REVIEW RESEARCH(2022)

引用 3|浏览56
暂无评分
摘要
Observing ultrafast laser-induced structural changes in nanoscale systems is essential for understanding the dynamics of intense light-matter interactions. For laser intensities on the order of 10(14) W/cm(2), highly collisional plasmas are generated at and below the surface. Subsequent transport processes such as heat conduction, electron-ion thermalization, surface ablation, and resolidification occur at picosecond and nanosecond timescales. Imaging methods, e.g., using x-ray free-electron lasers (XFEL), were hitherto unable to measure the depth-resolved subsurface dynamics of laser-solid interactions with appropriate temporal and spatial resolution. Here we demonstrate picosecond grazing-incidence small-angle x-ray scattering (GISAXS) from laser-produced plasmas using XFEL pulses. Using multilayer (ML) samples, both the surface ablation and subsurface density dynamics are measured with nanometer depth resolution. Our experimental data challenges the state-of-the-art modeling of matter under extreme conditions and opens new perspectives for laser material processing and high-energy density science.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要