Chrome Extension
WeChat Mini Program
Use on ChatGLM

HiggsSignals-2: Probing New Physics with Precision Higgs Measurements in the LHC 13 TeV Era

European Physical Journal C(2021)SCI 2区

Physikalisches Institut der Universität Bonn | Campus of International Excellence UAM+CSIC | Deutsches Elektronen-Synchrotron DESY | Lund University

Cited 140|Views17
Abstract
The program HiggsSignals confronts the predictions of models with arbitrary Higgs sectors with the available Higgs signal rate and mass measurements, resulting in a likelihood estimate. A new version of the program, HiggsSignals-2, is presented that contains various improvements in its functionality and applicability. In particular, the new features comprise improvements in the theoretical input framework and the handling of possible complexities of beyond-the-SM Higgs sectors, as well as the incorporation of experimental results in the form of simplified template cross section (STXS) measurements. The new functionalities are explained, and a thorough discussion of the possible statistical interpretations of the HiggsSignals results is provided. The performance of HiggsSignals is illustrated for some example analyses. In this context the importance of public information on certain experimental details like efficiencies and uncertainty correlations is pointed out. HiggsSignals is continuously updated to the latest experimental results and can be obtained at https://gitlab.com/higgsbounds/higgssignals.
More
Translated text
PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers
1953

被引用1094 | 浏览

V. Khachatryan, A. M. Sirunyan, A. Tumasyan, W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan, M. Friedl, R. Frühwirth, V. M. Ghete, C. Hartl,
2014

被引用902 | 浏览

G. Aad, B. Abbott, J. Abdallah, S. Abdel Khalek, O. Abdinov, R. Aben, B. Abi, M. Abolins, O. S. AbouZeid, H. Abramowicz, H. Abreu, R. Abreu,
2014

被引用345 | 浏览

S. Chatrchyan, V. Khachatryan, A. M. Sirunyan, A. Tumasyan, W. Adam, T. Bergauer, M. Dragicevic, J. Eroe, C. Fabjan, M. Friedl, R. Fruehwirth, V. M. Ghete,
2014

被引用752 | 浏览

G. Aad, B. Abbott, J. Abdallah, S. Abdel Khalek, O. Abdinov, R. Aben, B. Abi, M. Abolins, O. S. AbouZeid, H. Abramowicz, H. Abreu, R. Abreu,
2015

被引用213 | 浏览

The ATLAS collaboration, G. Aad, B. Abbott, J. Abdallah, S. Abdel Khalek, O. Abdinov, R. Aben, B. Abi, M. Abolins, O. S. AbouZeid, H. Abramowicz, H. Abreu,
2015

被引用251 | 浏览

G. Aad, T. Abajyan, B. Abbott, J. Abdallah, S. Abdel Khalek, A. A. Abdelalim, O. Abdinov, R. Aben, B. Abi, M. Abolins, U. S. AbouZeid, H. Abramowicz,
2012

被引用8085 | 浏览

Desy Forschung Hochenergiephysik Desy Standort Zeuthen,Opal Collaborations
2006

被引用489 | 浏览

G. Aad, B. Abbott, J. Abdallah, O. Abdinov, R. Aben, M. Abolins, O. S. AbouZeid, H. Abramowicz, H. Abreu, R. Abreu, Y. Abulaiti, B. S. Acharya,
2015

被引用170 | 浏览

A. M. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Eroe, M. Flechl, M. Friedl,
2018

被引用89 | 浏览

The CMS collaboration, A. M. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, A. Escalante Del Valle,
2018

被引用58 | 浏览

M. Aaboud, G. Aad, B. Abbott, O. Abdinov, B. Abeloos, D. K. Abhayasinghe, S. H. Abidi, O. S. AbouZeid, N. L. Abraham, H. Abramowicz, H. Abreu, Y. Abulaiti,
2019

被引用102 | 浏览

The CMS collaboration, A. M. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, A. Escalante Del Valle,
2018

被引用120 | 浏览

Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper

要点】:HiggsSignals-2版本通过改进功能性和适用性,利用LHC 13 TeV能量区间的精确Higgs测量结果,对具有任意Higgs领域的模型进行 confrontation,以估计概率。

方法】:HiggsSignals程序将具有任意Higgs领域的模型预测与可用的Higgs信号率和质量测量结果进行比较,以估计概率。

实验】:HiggsSignals-2的性能通过一些示例分析进行展示,其中强调了某些实验细节(如效率和不确定性相关性)的公开信息的重要性。HiggsSignals会持续更新到最新的实验结果,并可从https://gitlab.com/higgsbounds/higgssignals获取。