Physicochemical, Biological, And Antibacterial Evaluation Of Tricalcium Silicate-Based Reparative Cements With Different Radiopacifiers

DENTAL MATERIALS(2021)

引用 32|浏览18
暂无评分
摘要
Objective. To evaluate tricalcium silicate-based (TCS) experimental materials, associated with zirconium oxide (ZrO2), calcium tungstate (CaWO4) or niobium oxide (Nb2O5) radiopacifiers, in comparison with MTA Repair HP (Angelus).Methods. Physicochemical tests: setting time, radiopacity, pH and solubility. In vitro assays: cytotoxicity: MTT and Neutral Red - NR; cell bioactivity: alkaline phosphatase activity (ALP), Alzarin red staining (ARS) and real time PCR (qPCR). Antibacterial activity: direct contact on Enterococcus faecalis in the planktonic form. Physicochemical and ARS data were submitted to ANOVA/Tukey tests; antibacterial activity, to Kruskall-Wallis and Dunn tests; MTT, NR, ALP and qPCR were analyzed by ANOVA/Bonferroni tests (alpha = 0.05).Results. TCS + CaWO4 presented the longest setting time and MTA HP the shortest. Except for TCS, all the materials presented radiopacity above 3 mmAl. The cements had alkaline pH, antibacterial activity, low solubility and no cytotoxic effects. The highest ALP activity occurred in 14 days, especially to TCS, TCS + ZrO2 and TCS + CaWO4. TCS + ZrO2, TCS + Nb2O5 and MTAHP had higher mineralized nodule formation than those of the negative control (NC). After 7 days, there was no difference in mRNA expression for ALP, when compared to NC. However, after 14 days there was no overexpressed ALP mRNA, especially TCS + Nb2O5, in relation to the CN. All the materials presented antimicrobial action.Significance. The pure tricalcium silicate associated with ZrO2, CaWO4 or Nb2O5 had appropriate physicochemical properties, antibacterial activity, cytocompatibility and induced mineralization in Saos-2, indicating their use as reparative materials. (c) 2020 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
更多
查看译文
关键词
Endodontics, Biological properties, Calcium silicate, Chemical properties, Dental materials, Physical properties
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要