谷歌浏览器插件
订阅小程序
在清言上使用

Investigation of Thermal Transport Properties in Pillared-Graphene Structure Using Nonequilibrium Molecular Dynamics Simulations

MRS Communications(2020)

引用 0|浏览0
暂无评分
摘要
This research focuses toward calculating the thermal conductivity of pillared-graphene structures (PGS). PGS consists of graphene and carbon nanotubes (CNTs). These two materials have great potential to manage heat generated by nano- and microelectronic devices because of their superior thermal conductivities. However, the high anisotropy limits their performance when it comes to three-dimensional heat transfer. Nonequilibrium molecular dynamics (NEMD) simulations were conducted to study thermal transport of PGS. The simulation results suggest that the thermal conductivity along the graphene plane can reach up to 284 W/m K depending on PGS’ parameters while along the CNT direction, the thermal conductivity can reach 20 W/m K.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要