25.11% efficiency silicon heterojunction solar cell with low deposition rate intrinsic amorphous silicon buffer layers

Solar Energy Materials and Solar Cells(2020)

引用 95|浏览12
暂无评分
摘要
Here we report a certified efficiency of up to 25.11% for silicon heterojunction (SHJ) solar cells on a full size n-type M2 monocrystalline-silicon (c-Si) wafer (total area, 244.5 cm2). An ultra-thin intrinsic a-Si:H buffer layer was introduced on the c-Si wafer surface using a 13.56 MHz home-made RF-PECVD with low deposition rate showing superior surface passivation. The ultra-thin i-a-Si:H film with both higher microstructure factor (R*) and H content evidently increases the SHJ solar cell open-circuit voltage (VOC) by 2 mV, and moreover, short-circuit current (ISC) and fill factor (FF) are also notably improved, resulting in a 0.52% absolute cell efficiency enhancement, in which FF is the main cause. In order to explore high conversion efficiency SHJ solar cells, both home-made RF-PECVD and commercial VHF-PECVD (40.68 MHz) are employed for deposition of the i-a-Si:H passivation layer. As a result, the efficiency of RF-PECVD-prepared SHJ cell is 0.21% higher than that of VHF-PECVD-prepared, mainly driven by VOC and ISC boost. This work offers a useful tool for fabrication of high performance SHJ solar cells which could be employed in mass production.
更多
查看译文
关键词
Silicon heterojunction solar cells,Surface passivation,Low deposition rate,Amorphous silicon,RF,VHF
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要