Determination of relevant factors affecting the surface oxygen exchange coefficient of solid oxide fuel cell cathode with ionic conducting oxide coating

Solid State Ionics(2020)

引用 5|浏览18
暂无评分
摘要
In order to investigate the relevant factors affecting the transport properties of solid oxide fuel cell cathodes upon coating with Ce0.9Gd0.1O1.95 (GDC), the surface oxygen exchange coefficient, k*, and oxide ion diffusivity, D*, of La0.6Sr0.4CoO3-δ (LSC) and La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) were measured by a combination of isotope exchange technique and secondary ion mass spectrometry (SIMS). The k* of LSCF/GDC enhanced compared to a bare LSCF for all measured temperatures. In contrast, the k* of LSC/GDC only showed an enhancement compared to the bare LSC at relatively low temperatures (below 873 K) but not at higher temperatures. From these results, GDC has a less significant effect on the k* of LSC compared to LSCF. This suggests that the enhancement of k* is possibly induced only when the oxygen vacancy concentration, δ, of the cathode is lower than that of GDC, although another factor may affect the enhancement. The enhancement of k* is attributed to the formation of triple-phase boundary where a spill-over mechanism controlled the oxygen reduction reaction. The change of rate-determining step of LSCF due to the GDC coating suggests that the enhancement of the k* is not only with respect to the incorporation process, but it is possibly enhancing the reaction steps that involve δ as well.
更多
查看译文
关键词
Surface oxygen exchange,Oxide ion diffusivity,Isotope exchange technique,Spill-over mechanism,Oxygen vacancy concentration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要