谷歌浏览器插件
订阅小程序
在清言上使用

Microstructural analysis of nitrogen-doped char by Raman spectroscopy: Raman shift analysis from first principles

Carbon(2020)

引用 47|浏览8
暂无评分
摘要
Nitrogen-doped materials are known to possess unique functional properties, making these materials potentially useful for environmental applications, heterogeneous catalysis, and electronics. In this paper we constructed first principles-based models of various polyaromatic structures containing N functionalities to better understand the effect of these functional groups on char Raman spectra. The presence of N functional groups induces active vibrations in the regions between 1400 and 1550 cm−1 and 1605-1650 cm−1. We used these insights to inform the deconvolution of N-doped cellulose char produced between 350 and 700 °C using cellulose/melamine blends 2:1. A consistent increase in the intensity of the D and G bands is observed with temperature, which is related to an increase in size of the aromatic cluster. A consistent decrease in the A (the valley region) band is related to the loss of heteroatoms (mainly N and O) as the carbonization temperature increases from 350 to 700 °C. Although the modeling results reported in this manuscript are used to inform the deconvolution of N-doped char Raman spectra, they are also relevant to study other nanocarbon-based materials.
更多
查看译文
关键词
Density functional theory calculations,N-doped carbons,Raman spectroscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要