Probiotic Clostridium butyricum ameliorated motor deficits in a mouse model of Parkinson's disease via gut microbiota-GLP-1 pathway.

Brain, behavior, and immunity(2020)

引用 100|浏览42
暂无评分
摘要
A connection between gut microbiota and Parkinson's disease (PD) indicates that dysbiosis of the gut microbiota might represent a risk factor for PD. Microbiota-targeted interventions, including probiotic Clostridium butyricum (Cb), have been recently shown to have favorable effects in PD by regulating microbiota-gut-brain axis. However, the potential beneficial roles and its mechanisms of Cb on PD were still unknown. Male C57BL/6 mice were subjected to a PD model-induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) and were treated intragastrically with Cb for 4 weeks. The motor functions were assessed by a series of behavioral tests including pole test, beam walking teat, forced swimming test and open field test. The dopaminergic neuron loss, synaptic plasticity and microglia activation, as well as the levels of colonic glucagon-like peptide-1 (GLP-1), colonic G protein-coupled receptors GPR41/43 and cerebral GLP-1 receptors were assessed. Gut microbial composition was assessed by 16S rRNA sequencing analysis. Our results showed that oral administration of Cb could improve motor deficits, dopaminergic neuron loss, synaptic dysfunction and microglia activation in the MPTP-induced mice. Meanwhile, Cb treatment could reverse the dysbiosis of gut microbiota and the decreased levels of colonic GLP-1, colonic GPR41/43 and cerebral GLP-1 receptor in the MPTP-induced mice. These findings indicated that the neuroprotective mechanism of Cb on PD might be related to the improvement of abnormal gut microbiota-gut-brain axis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要