谷歌浏览器插件
订阅小程序
在清言上使用

Failure of CD4 T Cell-Deficient Hosts To Control Chronic Nontyphoidal Salmonella Infection Leads to Exacerbated Inflammation, Chronic Anemia, and Altered Myelopoiesis

INFECTION AND IMMUNITY(2021)

引用 2|浏览27
暂无评分
摘要
Immunocompromised patients are more susceptible to recurrent nonty-phoidal Salmonella (NTS) bacteremia. A key manifestation of HIV infection is the loss of CD4 T cells, which are crucial for immunity to Salmonella infection. We characterized the consequences of CD4 T cell depletion in mice where virulent Salmonella establish chronic infection, similar to chronic NTS disease in humans. Salmonella-infected, CD4-depleted 129X1/SvJ mice remained chronically colonized for at least 5 weeks, displaying increased splenomegaly and more severe splenitis than infected mice with CD4 T cells. Mature erythrocytes, immature erythroid cells, and phagocytes accounted for the largest increase in splenic cellularity. Anemia, which is associated with increased mortality in Salmonella-infected humans, was exacerbated by CD4 depletion in infected mice and was accompanied by increased splenic sequestration of erythrocytes and fewer erythropoietic elements in the bone marrow, despite significantly elevated levels of circulating erythropoietin. Splenic sequestration of red blood cells, the appearance of circulating poikilocytes, and elevated proinflammatory cytokines suggest inflammation-induced damage to erythrocytes contributes to anemia and splenic retention of damaged cells in infected animals. Depleting CD4 T cells led to increased myeloid cells in peripheral blood, spleen, and bone marrow, as well as expansion of CD8 T cells, which has been observed in CD4-depleted humans. This work describes a mouse model of Salmonella infection that recapitulates several aspects of human disease and will allow us to investigate the interplay of innate and adaptive immune functions with chronic inflammation, anemia, and susceptibility to Salmonella infection.
更多
查看译文
关键词
CD4 T cell,CD4 deficiency,Salmonella,anemia,bone marrow,cellular immune response,inflammation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要