谷歌浏览器插件
订阅小程序
在清言上使用

Yeast FIT2 Homolog is Necessary to Maintain Cellular Proteostasis by Regulating Lipid Homeostasis

Journal of Cell Science(2020)

引用 14|浏览8
暂无评分
摘要
Lipid droplets (LDs) have long been regarded as inert cytoplasmic organelles with the primary function of housing excess intracellular lipids. More recently, LDs have been strongly implicated in conditions of lipid and protein dysregulation. The fat storage inducing transmembrane (FIT) family of proteins comprises of evolutionarily conserved endoplasmic reticulum (ER)-resident proteins that have been reported to induce LD formation. Here, we establish a model system to study the role of S. cerevisiae FIT homologues ( ScFIT ), SCS3 and YFT2 , in proteostasis and stress response pathways. While LD biogenesis and basal ER stress-induced unfolded protein response (UPR) remain unaltered in ScFIT mutants, SCS3 was found to be essential for proper stress-induced UPR activation and for viability in the absence of the sole yeast UPR transducer IRE1. Devoid of a functional UPR, scs3 mutants exhibited accumulation of triacylglycerol within the ER along with aberrant LD morphology, suggesting a UPR-dependent compensatory mechanism for LD maturation. Additionally, SCS3 was necessary to maintain phospholipid homeostasis. Strikingly, the absence of the ScFIT proteins results in the downregulation of the closely-related Heat Shock Response (HSR) pathway. In line with this observation, global protein ubiquitination and the turnover of both ER and cytoplasmic misfolded proteins is impaired in ScFIT cells, while a screen for interacting partners of Scs3 identifies components of the proteostatic machinery as putative targets. Taken together, these suggest that ScFIT proteins may modulate proteostasis and stress response pathways with lipid metabolism at the interface between the two cellular processes.
更多
查看译文
关键词
Protein Folding
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要