谷歌浏览器插件
订阅小程序
在清言上使用

Novel Self-Replicating Α-Synuclein Polymorphs That Escape ThT Monitoring Can Spontaneously Emerge and Acutely Spread in Neurons

Science advances(2020)

引用 42|浏览60
暂无评分
摘要
Stealth α-synuclein amyloids proliferate in preparations of preformed fibrils and form aggressive self-replicating strains. The conformational strain diversity characterizing α-synuclein (α-syn) amyloid fibrils is thought to determine the different clinical presentations of neurodegenerative diseases underpinned by a synucleinopathy. Experimentally, various α-syn fibril polymorphs have been obtained from distinct fibrillization conditions by altering the medium constituents and were selected by amyloid monitoring using the probe thioflavin T (ThT). We report that, concurrent with classical ThT-positive products, fibrillization in saline also gives rise to polymorphs invisible to ThT (τ−). The generation of τ− fibril polymorphs is stochastic and can skew the apparent fibrillization kinetics revealed by ThT. Their emergence has thus been ignored so far or mistaken for fibrillization inhibitions/failures. They present a yet undescribed atomic organization and show an exacerbated propensity toward self-replication in cortical neurons, and in living mice, their injection into the substantia nigra pars compacta triggers a synucleinopathy that spreads toward the dorsal striatum, the nucleus accumbens, and the insular cortex.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要