谷歌浏览器插件
订阅小程序
在清言上使用

Analysis of the Complexation Process Between Starch Molecules and Trilinolenin

International Journal of Biological Macromolecules(2020)

引用 12|浏览11
暂无评分
摘要
Starch is a basic biomacromolecule, and an in-depth understanding of the process and mechanism of starch-lipid complexation has great significance for starch based food and pharmaceutical. In this study, molecular dynamics simulation was used to explore the complexation details between starch molecules and trilinolenin, such as complexation process, interaction forces, conformation changes and stability changes, which are difficult to be verified by using other characterization methods. The results show that, firstly, starch residues of one turn helix (8 residues) are enough to bind a trilinolenin molecule firmly. Secondly, the complex is maintained by Van der Waals and electrostatic interaction. Thirdly, the residues complexed with trilinolenin become more stable than the former or the free residues. In brief, the complexation process, interaction forces, conformation changes and stability changes of the starch-trilinolenin complex were clarified in this study. The results may create new insights for the research about the interaction of starch and lipid, then provide theoretical guidance for the research on starch based food and pharmaceutical.
更多
查看译文
关键词
Starch,Trilinolenin,Starch-trilinolenin complex,Molecular dynamics simulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要