Substrate Resistance to Traction Forces Controls Fibroblast Polarization

Biophysical Journal(2020)

引用 9|浏览9
暂无评分
摘要
The mechanics of fibronectin-rich extracellular matrix regulate cell physiology in a number of diseases, prompting efforts to elucidate cell mechanosensing mechanisms at the molecular and cellular scale. Here, the use of fibronectin-functionalized silicone elastomers that exhibit considerable frequency-dependence in viscoelastic properties unveiled the presence of two cellular processes that respond discreetly to substrate mechanical properties. Soft elastomers supported efficient focal adhesion maturation and fibroblast spreading due to an apparent stiff surface layer. However, soft elastomers did not enable cytoskeletal and fibroblast polarization; elastomers with high cross-linking and low deformability were required for polarization. The underlying reason for this behavior was the inability of soft elastomeric substrates to resist traction forces, rather than a lack of sufficient traction force generation; accordingly, mild inhibition of actomyosin contractility rescued fibroblast polarization even on the softer elastomers. Our findings help reconcile previously proposed local and global models of cell mechanosensing by demonstrating the differential dependence of substrate mechanics on distinct cellular processes. Statement of Significance The mechanisms cells employ to sense and respond to the mechanical properties of their surroundings remain incompletely understood. In this study we used a commercial silicone elastomer formulation to prepare compliant, fibronectin-coated substrates and investigate the adhesion and polarization of human fibroblasts. Our results suggest the existence of at least two discrete mechanosensing processes regulated at different time and length (force) scales. Focal adhesion assembly and cell spreading were promoted by a stiff surface layer independent from bulk viscoelasticity, whereas effective cell polarization required elevated elastomer stiffness, sufficient to resist applied cell traction. The results presented here have implications on the use of elastomeric substrates as biomaterials for mechanosensing studies or clinical applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要