Chrome Extension
WeChat Mini Program
Use on ChatGLM

An orthogonal differentiation platform for genomically programming stem cells, organoids, and bioprinted tissues

biorxiv(2020)

Cited 1|Views16
No score
Abstract
Simultaneous differentiation of human induced pluripotent stem cells (hiPSCs) into divergent cell types offers a pathway to achieving tailorable cellular complexity, patterned architecture, and function in engineered human organoids and tissues. Recent transcription factor (TF) overexpression protocols typically produce only one cell type of interest rather than the multitude of cell types and structural organization found in native human tissues. Here, we report an orthogonal differentiation platform for genomically programming stem cells, organoids and bioprinted tissues with controlled composition and organization. To demonstrate this platform, we orthogonally differentiated endothelial cells and neurons from hiPSCs in a one-pot system containing neural stem cell-specifying media. By aggregating inducible-TF and wildtype hiPSCs into pooled and multicore-shell embryoid bodies, we produced vascularized and patterned cortical organoids within days. Using multimaterial 3D bioprinting, we patterned 3D neural tissues from densely cellular, matrix-free stem cell inks that were orthogonally differentiated on demand into distinct layered regions composed of neural stem cells, endothelium, and neurons, respectively. Given the high proliferative capacity and patient-specificity of hiPSCs, our platform provides a facile route for programming cells and multicellular tissues for drug screening and therapeutic applications.
More
Translated text
Key words
programming stem cells,orthogonal differentiation platform,stem cells,organoids
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined