谷歌浏览器插件
订阅小程序
在清言上使用

Ascorbate Peroxidase Neofunctionalization at the Origin of APX-R and APX-L: Evidence from Basal Archaeplastida

Antioxidants(2021)

引用 10|浏览10
暂无评分
摘要
Ascorbate peroxidases (APX) are class I members of the Peroxidase-Catalase superfamily, a large group of evolutionarily related but rather divergent enzymes. Through mining in public databases, unusual subsets of APX homologs were identified, disclosing the existence of two yet uncharacterized families of peroxidases named ascorbate peroxidase-related (APX-R) and ascorbate peroxidase-like (APX-L). As APX, APX-R harbor all catalytic residues required for peroxidatic activity. Nevertheless, proteins of this family do not contain residues known to be critical for ascorbate binding and therefore cannot use it as an electron donor. On the other hand, APX-L proteins not only lack ascorbate-binding residues, but also every other residue known to be essential for peroxidase activity. Through a molecular phylogenetic analysis performed with sequences derived from basal Archaeplastida, the present study discloses the existence of hybrid proteins, which combine features of these three families. The results here presented show that the prevalence of hybrid proteins varies among distinct groups of organisms, accounting for up to 33% of total APX homologs in species of green algae. The analysis of this heterogeneous group of proteins sheds light on the origin of APX-R and APX-L and suggests the occurrence of a process characterized by the progressive deterioration of ascorbate-binding and catalytic sites towards neofunctionalization.
更多
查看译文
关键词
ascorbate peroxidase—APX,APX-R,APX-L,catalytic sites,substrate,protein divergence
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要