Chrome Extension
WeChat Mini Program
Use on ChatGLM

Precision of Tissue Patterning is Controlled by Dynamical Properties of Gene Regulatory Networks

bioRxiv (Cold Spring Harbor Laboratory)(2019)

Cited 33|Views14
No score
Abstract
During development, gene regulatory networks allocate cell fates by partitioning tissues into spatially organised domains of gene expression. How the sharp boundaries that delineate these gene expression patterns arise, despite the stochasticity associated with gene regulation, is poorly understood. We show, in the vertebrate neural tube, using perturbations of coding and regulatory regions, that the structure of the regulatory network contributes to boundary precision. This is achieved, not by reducing noise in individual genes, but by the configuration of the network modulating the ability of stochastic fluctuations to initiate gene expression changes. We use a computational screen to identify network properties that influence boundary precision, revealing two dynamical mechanisms by which small gene circuits attenuate the effect of noise in order to increase patterning precision. These results highlight design principles of gene regulatory networks that produce precise patterns of gene expression.
More
Translated text
Key words
cis regulatory elements,Dynamical systems theory,Gene regulatory network,Morphogen signaling,Neural tube
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined