谷歌浏览器插件
订阅小程序
在清言上使用

Technological and ecological approaches to design and manage sustainable greenhouse production systems

XXIX INTERNATIONAL HORTICULTURAL CONGRESS ON HORTICULTURE: SUSTAINING LIVES, LIVELIHOODS AND LANDSCAPES (IHC2014): INTERNATIONAL SYMPOSIUM ON INNOVATION AND NEW TECHNOLOGIES IN PROTECTED CROPPING(2015)

引用 2|浏览11
暂无评分
摘要
Protected cultivation or Controlled Environment Agriculture (CEA) system has increased tenfold in the last 25 years thanks to tremendous scientific and technical breakthroughs, mainly directed to increasing crop yields and adapting to tough ambient conditions. Currently, greenhouse areas are still spreading and the CEA system is one of the keystones for the agriculture forecasting scenario. However, the environmental acceptability of this very intensive agro-ecosystem is now being questioned. Energy inputs are source of the main economic and environmental weakness, especially for high-tech greenhouses, where IPM is well-established. Pesticides, common in low-cost greenhouses systems, are a major barrier-to IPM. To design and manage more robust CEA systems, both technological and ecological approaches have been chosen. This allowed for increased consideration of IPM issues among global greenhouse engineering innovation and better use of greenhouse system capacities to enhance dedicated IPM high-tech tools and management practices. On the other hand, ecological concepts were used to determine and characterize complex biotic interactions that lead to question the tenant of biological control as soon as IPM is implemented in greenhouses with sub-optimum physical pest control means. More specifically, microclimate at the boundary layer level has been investigated both from a physical and biological point of view in order to determine the best climate preferences of the main pests and beneficials. By the same token, the efficiency of diverse biocontrol plants to provide accurate shelter to natural enemies has been assessed.
更多
查看译文
关键词
Integrated Pest Management,biological control agents,biotic interactions,system approach,decision aid system,ecosystem service
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要