Bi-Allelic Shoc1 Loss-Of-Function Mutations Cause Meiotic Arrest And Non-Obstructive Azoospermia

JOURNAL OF MEDICAL GENETICS(2021)

引用 22|浏览61
暂无评分
摘要
Background The genetic causes of human idiopathic non-obstructive azoospermia (NOA) with meiotic arrest remain unclear. Methods Two Chinese families with infertility participated in the study. In family 1, two brothers were affected by idiopathic NOA. In family 2, the proband was diagnosed with idiopathic NOA, and his elder sister suffered from infertility. Whole-exome sequencing (WES) was conducted in the two patients in family 1, the proband in family 2 and 362 additional sporadic patients with idiopathic NOA. Sanger sequencing was used to verify the WES results. Periodic acid-Schiff (PAS), immunohistochemistry (IHC) and meiotic chromosomal spread analyses were carried out to evaluate the stage of spermatogenesis arrested in the affected cases. Results We identified compound heterozygous loss of function (LoF) variants of SHOC1 (c.C1582T:p.R528X and c.231_232del:p.L78Sfs*9, respectively) in both affected cases with NOA from family 1. In family 2, homozygous LoF variant in SHOC1 (c.1194delA:p.L400Cfs*7) was identified in the siblings with infertility. PAS, IHC and meiotic chromosomal spread analyses demonstrated that the spermatogenesis was arrested at zygotene stage in the three patients with NOA. Consistent with the autosomal recessive mode of inheritance, all of these SHOC1 variants were inherited from heterozygous parental carriers. Intriguingly, WES of 362 sporadic NOA cases revealed one additional NOA case with a bi-allelic SHOC1 LoF variant (c.1464delT:p.D489Tfs*13). Conclusion To the best of our knowledge, this is the first report identifying SHOC1 as the causative gene for human NOA. Furthermore, our study showed an autosomal recessive mode of inheritance in the NOA caused by SHOC1 deficiency.
更多
查看译文
关键词
Loss of function mutation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要