谷歌浏览器插件
订阅小程序
在清言上使用

Direct Inhibition of Keap1-Nrf2 Protein-Protein Interaction As a Potential Therapeutic Strategy for Alzheimer's Disease.

BIOORGANIC CHEMISTRY(2020)

引用 31|浏览23
暂无评分
摘要
The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) pathway works as the key regulator against oxidative stress damage in many cells and organs. It has been a widely proposed therapeutic target for neurodegenerative diseases, including Alzheimer's disease (AD). This study aimed at determining the neuroprotective activity of 9 (NXPZ-2), a small-molecule compound that directly inhibits the Keap1-Nrf2 protein-protein interaction, in an amyloid beta(1-42) (A beta(1-42)) oligomer intracerebroventricularly (i.c.v.) injected mouse model. Behavioral tests showed that NXPZ-2 treatment dose-relatedly ameliorated learning and memory dysfunction in A beta(1-42)-treated mice. HE and Nissl staining showed that NXPZ-2 improved brain tissue pathological changes in AD mice by increasing neuron quantity and function. Western blot analysis of the hippocampus and cortex showed up-regulated Nrf2 in whole cell lysate, with increased nuclear translocation to increase Nrf2-targeted antioxidant enzymes (HO-1, NQO-1) and decreased p-Tau in NXPZ-2-treated mice. ELISA results showed that NXPZ-2 treatment increased serum Nrf2 and significantly decreased serum A beta(1-42) levels in AD mice. Furthermore, hippocampal and cortical superoxide dismutase (SOD) and glutathione (GSH) levels increased, while malondialdehyde (MDA) levels decreased. No obvious toxicity was observed in primary cultured mouse cortical neurons and organs with NXPZ-2 treatment. No ameliorative effect was observed of NXPZ-2 in Nrf2 knockout AD mice. Collectively, our findings demonstrated that NXPZ-2 could be a promising therapeutic agent against AD, and provided the first set of experimental evidence, in a mouse model, to support Keap1-Nrf2 interaction as a validated target for the Nrf2 reactivation in AD.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要