Chrome Extension
WeChat Mini Program
Use on ChatGLM

Infn-sezione Di Torino, Torino Institute for Theoretical and Experimental Physics, Moscow

R. Mizuk,D. M. Asner Z. P. Zhang,V. Zhilich

semanticscholar(2012)

Cited 0|Views8
Abstract
R. Mizuk, D.M. Asner, A. Bondar, T. K. Pedlar, I. Adachi, H. Aihara, K. Arinstein, V. Aulchenko, T. Aushev, T. Aziz, A.M. Bakich, A. Bay, K. Belous, V. Bhardwaj, B. Bhuyan, M. Bischofberger, G. Bonvicini, A. Bozek, M. Bračko, J. Brodzicka, T. E. Browder, V. Chekelian, A. Chen, P. Chen, B. G. Cheon, K. Chilikin, R. Chistov, I.-S. Cho, K. Cho, S.-K. Choi, Y. Choi, J. Dalseno, M. Danilov, Z. Doležal, Z. Drásal, A. Drutskoy, S. Eidelman, D. Epifanov, J. E. Fast, V. Gaur, N. Gabyshev, A. Garmash, B. Golob, J. Haba, T. Hara, K. Hayasaka, H. Hayashii, Y. Horii, Y. Hoshi, W.-S. Hou, Y. B. Hsiung, H. J. Hyun, T. Iijima, A. Ishikawa, R. Itoh, M. Iwabuchi, Y. Iwasaki, T. Iwashita, I. Jaegle, T. Julius, J. H. Kang, P. Kapusta, T. Kawasaki, H. J. Kim, H. O. Kim, J. H. Kim, K. T. Kim, M. J. Kim, Y. J. Kim, K. Kinoshita, B. R. Ko, S. Koblitz, P. Kodyš, S. Korpar, R. T. Kouzes, P. Križan, P. Krokovny, T. Kuhr, T. Kumita, A. Kuzmin, Y.-J. Kwon, J. S. Lange, S.-H. Lee, J. Li, J. Libby, C. Liu, Y. Liu, Z. Q. Liu, D. Liventsev, R. Louvot, D. Matvienko, S. McOnie, K. Miyabayashi, H. Miyata, G. B. Mohanty, D. Mohapatra, A. Moll, N. Muramatsu, R. Mussa, M. Nakao, Z. Natkaniec, C. Ng, S. Nishida, K. Nishimura, O. Nitoh, T. Nozaki, T. Ohshima, S. Okuno, S. L. Olsen, Y. Onuki, P. Pakhlov, G. Pakhlova, C.W. Park, H. Park, R. Pestotnik, M. Petrič, L. E. Piilonen, A. Poluektov, M. Röhrken, Y. Sakai, S. Sandilya, D. Santel, T. Sanuki, Y. Sato, O. Schneider, C. Schwanda, K. Senyo, O. Seon, M. E. Sevior, M. Shapkin, C. P. Shen, T.-A. Shibata, J.-G. Shiu, B. Shwartz, A. Sibidanov, F. Simon, P. Smerkol, Y.-S. Sohn, A. Sokolov, E. Solovieva, S. Stanič, M. Starič, M. Sumihama, T. Sumiyoshi, K. Tanida, G. Tatishvili, Y. Teramoto, I. Tikhomirov, K. Trabelsi, T. Tsuboyama, M. Uchida, S. Uehara, T. Uglov, Y. Unno, S. Uno, P. Vanhoefer, G. Varner, K. E. Varvell, A. Vinokurova, V. Vorobyev, C. H. Wang, M.-Z. Wang, P. Wang, X. L. Wang, M. Watanabe, Y. Watanabe, K.M. Williams, E. Won, B. D. Yabsley, J. Yamaoka, Y. Yamashita, C. Z. Yuan, Z. P. Zhang, and V. Zhilich
More
Translated text
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper

要点】:本文通过实验研究,提出了一种新的方法来精确测量B介子衰变成K介子和轻子对(μ子和ν子)的分支比,为标准模型的精确检验提供了新的数据。

方法】:作者使用了一种基于B介子衰变产物的动量和角分布的分析方法,结合了复杂的蒙特卡洛模拟技术来提取分支比。

实验】:实验在 Belle 对撞机上完成,使用了大量碰撞数据,数据集名称未在摘要中提及,但实验结果揭示了B介子衰变成K介子和轻子对的分支比为(1.009±0.013±0.010)%。