Oxide Fermi Liquid Universality Revealed by Electron Spectroscopy

Physical review B/Physical review B(2020)

Cited 4|Views176
No score
Abstract
We present a combined soft x-ray and high-resolution vacuum-ultraviolet angle-resolved photoemission spectroscopy study of the electron-overdoped cuprate Pr1.3-xLa0.7CexCuO4 (PLCCO). Demonstration of its highly two-dimensional band structure enabled precise determination of the in-plane self-energy dominated by electron-electron scattering. Through analysis of this self-energy and the Fermi liquid cut-off energy scale, we find-in contrast to hole-doped cuprates-a momentum isotropic and comparatively weak electron correlation in PLCCO. Yet, the self-energies extracted from multiple oxide systems combine to demonstrate a logarithmic divergent relation between the quasiparticle scattering rate and mass. This constitutes a spectroscopic version of the Kadowaki-Woods relation with an important merit-the demonstration of Fermi liquid quasiparticle lifetime and mass being set by a single energy scale.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined