谷歌浏览器插件
订阅小程序
在清言上使用

Adaptations in GLUT4 Expression in Response to Exercise Detraining Linked to Downregulation of Insulin-Dependent Pathways in Cardiac but Not in Skeletal Muscle Tissue

International journal of sport nutrition and exercise metabolism(2020)

引用 0|浏览8
暂无评分
摘要
Insulin resistance is associated with cardiometabolic risk factors, and exercise training can improve insulin-mediated glucose uptake. However, few studies have demonstrated the reversibility of exercise-induced benefits. Thus, the authors examine the time-response effects of exercise training and detraining on glucose transporter 4 (GLUT4) content, insulin-dependent and insulin-independent pathways in cardiac and gastrocnemius muscle tissues of spontaneously hypertensive rats. Thirty-two male spontaneously hypertensive rats, 4 months old, were assigned to (n = 8/group): T (exercise training: 10-week treadmill exercise, 50-70% maximum effort capacity, 1 hr/day, 5 days/week); D2 (exercise training + 2-day detraining), D4 (exercise training + 4-day detraining); and S (no exercise). The authors evaluated insulin resistance, maximum effort capacity, GLUT4 content, p-IRS-1Tyr1179, p-AS160Ser588, p-AMPKα1Thr172, and p-CaMKIIThr286 in cardiac and gastrocnemius muscle tissues (Western blot). In response to exercise training, there were improvements in insulin resistance (15.4%; p = .010), increased GLUT4 content (microsomal, 29.4%; p = .012; plasma membrane, 27.1%; p < .001), p-IRS-1 (42.2%; p < .001), p-AS160 (60.0%; p < .001) in cardiac tissue, and increased GLUT4 content (microsomal, 29.4%; p = .009; plasma membrane, 55.5%; p < .001), p-IRS-1 (28.1%; p = .018), p-AS160 (76.0%; p < .001), p-AMPK-α1 (37.5%; p = .026), and p-CaMKII (30.0%; p = .040) in the gastrocnemius tissue. In D4 group, the exercise-induced increase in GLUT4 was reversed (plasma membrane, -21.3%; p = .027), p-IRS1 (-37.1%; p = .008), and p-AS160 (-82.6%; p < .001) in the cardiac tissue; p-AS160 expression (-35.7%; p = .034) was reduced in the gastrocnemius. In conclusion, the cardiac tissue is more susceptible to exercise adaptations in the GLUT4 content and signaling pathways than the gastrocnemius muscle. This finding may be explained by particular characteristics of insulin-dependent and insulin-independent pathways in the muscle tissues studied.
更多
查看译文
关键词
exercise training,insulin-dependent signaling,insulin-independent pathways,insulin resistance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要