谷歌浏览器插件
订阅小程序
在清言上使用

The effect of strain rate on stress corrosion performance of Ti6Al4V alloy produced by additive manufacturing process

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T(2020)

引用 30|浏览8
暂无评分
摘要
Ti6Al4V alloy is considered as a favourable material for additive manufacturing (AM) and in particular for selective laser melting (SLM), due to the inherent difficulties relating to casting and plastic forming of this alloy. However, the significantly increased solidification rate associated with the SLM process results in a modified micro-structure and inherent casting imperfections that can have a detrimental effect on the alloy stress corrosion performance. The main objective of this study was to evaluate the effect of strain rate on stress corrosion behavior of Ti6Al4V alloy produced by SLM, as compared to its wrought alloy (Grade 5) coun-terpart of the same chemical composition. Micro-structure and phase identification were examined by scanning electron microscopy and X-ray diffraction analysis. General corrosion resistance was evaluated in terms of open circuit potential, potentiodynamic polarization analysis and by impedance spectroscopy, while stress corrosion behavior was examined at various strain rates in a 3.5% NaCl solution at ambient temperature. The results obtained revealed that general corrosion resistance and stress corrosion endurance at slow strain rate, in terms of time to failure and ductility of the SLM alloy, were relatively reduced, as compared to the wrought alloy counterpart. This was mainly due to the formation of a strained martensitic matrix in the form of alpha' phase and the significant reduction of the 13 phase in the alloy produced by SLM process. (C) 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
更多
查看译文
关键词
Additive Manufacturing (AM),Corrosion,Mechanical behavior,Selective Laser Melting (SLM),Stress corrosion,Ti6Al4V
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要