谷歌浏览器插件
订阅小程序
在清言上使用

Convex geometry and the Erd\H{o}s-Ginzburg-Ziv problem

arXiv (Cornell University)(2023)

引用 0|浏览2
暂无评分
摘要
Denote by ${\mathfrak s}({\mathbb F}_p^d)$ the Erd{\H o}s--Ginzburg--Ziv constant of ${\mathbb F}_p^d$, that is, the minimum $s$ such that any sequence of $s$ vectors in ${\mathbb F}_p^d$ contains $p$ vectors whose sum is zero. Let ${\mathfrak w}({\mathbb F}_p^d)$ be the maximum size of a sequence of vectors $v_1, \ldots, v_s \in {\mathbb F}_p^d$ such that for any integers $\alpha_1, \ldots, \alpha_s \ge 0$ with sum $p$ we have $\alpha_1 v_1 + \ldots + \alpha_s v_s \neq 0$ unless $\alpha_i = p$ for some $i$. In 1995, Alon--Dubiner proved that ${\mathfrak s}(\mathbb F_p^d)$ grows linearly in $p$ when $d$ is fixed. In this work, we determine the constant of linearity: for fixed $d$ and growing $p$ we show that ${\mathfrak s}({\mathbb F}_p^d) \sim {\mathfrak w}({\mathbb F}_p^d) p$. Furthermore, for any $p$ and $d$ we show that ${\mathfrak w}({\mathbb F}_p^d) \le {2d-1 \choose d}+1$. In particular, ${\mathfrak s}({\mathbb F}_p^d) \le 4^d p$ for all sufficiently large $p$ and fixed $d$.
更多
查看译文
关键词
convex geometry,s-ginzburg-ziv
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要